4 | | Sigue a continuación una NameBlock con la implementación del cálculo: |
5 | | {{{ |
6 | | NameBlock ROC = |
7 | | [[ |
8 | | Set _.interp.Set = SetOfText("linear", "akima", "cspline"); |
9 | | |
10 | | Set _Interp |
11 | | ( |
12 | | Set xSet, // Set xSet with we want to know y for all funSet |
13 | | Set setFunSet, // Set of tables with same structure SetOfReal(x, y) |
14 | | Set interpSet // Set with gsl valid interpolate method (see gsl_interp) |
15 | | ) |
16 | | { |
17 | | Set setxyFunSet = EvalSet(setFunSet, Set(Set funSet) |
18 | | { |
19 | | SetOfMatrix(SetCol(Traspose(funSet)[1]), SetCol(Traspose(funSet)[2])) |
20 | | }); |
21 | | |
22 | | EvalSet(xSet, Set(Real x) |
23 | | { |
24 | | Set ySet = EvalSet(setxyFunSet, Real(Set xyFunSet) |
25 | | { |
26 | | Matrix xFunSet = xyFunSet[1]; |
27 | | Matrix yFunSet = xyFunSet[2]; |
28 | | |
29 | | Set ySet = EvalSet(interpSet, Real(Text code) |
30 | | { |
31 | | Code gslInterp = gsl_interp(code, xFunSet, yFunSet); |
32 | | gslInterp(0, x) |
33 | | }); |
34 | | SetAvr(ySet) |
35 | | }); |
36 | | SetOfReal(x)<<ySet |
37 | | }) |
38 | | }; |
39 | | |
40 | | Set Curve(Matrix y, Matrix py, Set sliceSet) |
41 | | { |
42 | | Set graf = EvalSet(sliceSet, Set(Real slice) |
43 | | { |
44 | | Matrix yEst = GE(py, Rand(Rows(py), 1 , slice, slice)); |
45 | | Real VP = MatSum(And(yEst, y)); |
46 | | Real FN = MatSum(And(Not(yEst), y)); |
47 | | Real VN = MatSum(And(Not(yEst), Not(y))); |
48 | | Real FP = MatSum(And(yEst, Not(y))); |
49 | | |
50 | | Real TVP = VP/(VP+FN); |
51 | | Real TFP = 1-VN/(VN+FP);//=FP/(VN+FP) |
52 | | SetOfReal(TFP, TVP, slice) |
53 | | }); |
54 | | Set claTFP = Classify(graf, Real(Set reg1, Set reg2) |
55 | | { |
56 | | Real tfp1 = reg1[1]; |
57 | | Real tfp2 = reg2[1]; |
58 | | Compare(tfp1, tfp2) |
59 | | }); |
60 | | EvalSet(claTFP, Set(Set class) |
61 | | { |
62 | | Real maxTvp = SetMax(Traspose(class)[2]); |
63 | | Select(class, Real(Set reg){EQ(reg[2], maxTvp)})[1] |
64 | | }) |
65 | | }; |
66 | | |
67 | | Set Curve.Abs |
68 | | ( |
69 | | Set ROCSet, // Table with reg = SetOfReal(TFP, TVP, slice, ...) |
70 | | Real M, // Total |
71 | | Real m // Infected |
72 | | ) |
73 | | { |
74 | | Real p = m/(M-m); |
75 | | EvalSet(ROCSet, Set(Set reg) |
76 | | { |
77 | | Real TFP = reg[1]; |
78 | | Real TVP = reg[2]; |
79 | | Real slice = reg[3]; |
80 | | Real infected = TVP*m; |
81 | | Real population = (p*TVP+TFP)*M/(1+p); |
82 | | SetOfReal(TFP, TVP, population, infected, slice) |
83 | | }) |
84 | | }; |
85 | | |
86 | | Set Eval.TFPSet(Set tfpSet, Set ROCSet) |
87 | | { |
88 | | Set tROCSet = Traspose(ROCSet); |
89 | | Set txFP = tROCSet[1]; |
90 | | Set txVP = tROCSet[2]; |
91 | | Set txSL = tROCSet[3]; |
92 | | |
93 | | Set setFunSet = SetOfSet |
94 | | ( |
95 | | Traspose(SetOfSet(txFP, txVP)), |
96 | | Traspose(SetOfSet(txFP, txSL)) |
97 | | ); |
98 | | _Interp(tfpSet, setFunSet, _.interp.Set) |
99 | | }; |
100 | | |
101 | | Set EvalAbs.PopSet(Set popSet, Set ROCAbsSet) |
102 | | { |
103 | | Set tROCSet = Traspose(ROCAbsSet); |
104 | | Set txPop = tROCSet[3]; |
105 | | Set txInf = tROCSet[4]; |
106 | | Set txSL = tROCSet[5]; |
107 | | |
108 | | Set setFunSet = SetOfSet |
109 | | ( |
110 | | Traspose(SetOfSet(txPop, txInf)), |
111 | | Traspose(SetOfSet(txPop, txSL)) |
112 | | ); |
113 | | _Interp(popSet, setFunSet, _.interp.Set) |
114 | | }; |
115 | | |
116 | | Real Get.Area(Set ROCSet) |
117 | | { |
118 | | Set txFP = Traspose(ROCSet)[1]; |
119 | | Set txVP = Traspose(ROCSet)[2]; |
120 | | Set setFunSet = SetOfSet( Traspose(SetOfSet(txFP, txVP)) ); |
121 | | Real get.tvp(Real tfp) |
122 | | { |
123 | | Set tfpSet = SetOfReal(tfp); |
124 | | Real tvp = _Interp(tfpSet, setFunSet, _.interp.Set)[1][2]; |
125 | | tvp |
126 | | }; |
127 | | IntegrateQAG(get.tvp, 0, 1) |
128 | | } |
129 | | ]]; |
130 | | }}} |
131 | | |
| 4 | Sigue a continuación una NameBlock con la implementación del cálculo: [attachment:roc.tol] |