1 | |
---|
2 | ////////////////////////////////////////////////////////////////////////////// |
---|
3 | Real CheckLinCom( Set OutputInfo, Set InputsInfo, Set AllHierarchyInfo, |
---|
4 | Text obs.node, Real vl_inf, Real vl_pri, Text logRoute) |
---|
5 | ////////////////////////////////////////////////////////////////////////////// |
---|
6 | { |
---|
7 | // We extract all parameters involved in any hierarchy for node obs.node |
---|
8 | Set sHieNodeInfo = BinGroup("<<",EvalSet(AllHierarchyInfo,Set (Set s) |
---|
9 | { |
---|
10 | Set prev1 = Extract(s,2)|Extract(s,1); |
---|
11 | |
---|
12 | Set prev2 = Select(prev1,Real (Set x) |
---|
13 | { |
---|
14 | Real If(x[1] == obs.node, True, False) |
---|
15 | }) - [[ Empty ]]; |
---|
16 | |
---|
17 | Set BinGroup("<<",Extract(prev2,2)) |
---|
18 | })); |
---|
19 | |
---|
20 | |
---|
21 | Real c = 0; |
---|
22 | |
---|
23 | Set inputs = Select(OutputInfo::InputDB,Real (Anything x) |
---|
24 | { |
---|
25 | Real c := c+1; |
---|
26 | |
---|
27 | // Real flag is a label that tell us if an input has not any prior, or |
---|
28 | // has not any unknown value, or if it is involved in any hierarchy |
---|
29 | tree |
---|
30 | |
---|
31 | Real flag = |
---|
32 | If( |
---|
33 | Name(InputsInfo[c]) <: sHieNodeInfo, |
---|
34 | Real False, |
---|
35 | If( |
---|
36 | Not(And( BinEQ( ?, (InputsInfo[c])->prior_mu ), |
---|
37 | BinEQ( ?, (InputsInfo[c])->prior_sigma ))), |
---|
38 | Real False, |
---|
39 | If( |
---|
40 | Grammar(x) == "Serie", |
---|
41 | Real Not(MatSum(IsUnknown(SerMat(x)))),// HasUnknown is slower |
---|
42 | If( |
---|
43 | Grammar(x) == "Matrix", |
---|
44 | Real Not(MatSum(IsUnknown(x))),// HasUnknown is slower |
---|
45 | Real True |
---|
46 | ) |
---|
47 | ) |
---|
48 | ) |
---|
49 | ); |
---|
50 | |
---|
51 | flag |
---|
52 | }); |
---|
53 | |
---|
54 | Real If( Not(Card(inputs)), |
---|
55 | Real True, |
---|
56 | Real LinComWarning(OutputInfo,inputs,logRoute,id_model,obs.node) |
---|
57 | ) |
---|
58 | }; |
---|
59 | ////////////////////////////////////////////////////////////////////////////// |
---|
60 | PutDescription( |
---|
61 | "It checks a set of input series (or matrix) to find linear combinations |
---|
62 | between the observational node parameters. It needs an OutputInfo BSR set |
---|
63 | of |
---|
64 | input series, the observational node, the real variable vl_pri (True or |
---|
65 | False) |
---|
66 | and a Path to store a log file with the report of the parameters that has |
---|
67 | linear combinations between them. |
---|
68 | If exist linear combination, it writes in log file and kill TOL", |
---|
69 | CheckLinCom); |
---|
70 | ////////////////////////////////////////////////////////////////////////////// |
---|
71 | |
---|
72 | |
---|
73 | ////////////////////////////////////////////////////////////////////////////// |
---|
74 | Real LinComWarning(Set OutputInfo, Set inputs, Text logRoute, Text |
---|
75 | id_model, |
---|
76 | Text node) |
---|
77 | ////////////////////////////////////////////////////////////////////////////// |
---|
78 | { |
---|
79 | Real matrix = If( id_dating == "Matrix",True,False); |
---|
80 | |
---|
81 | Set lcw = If( Not(matrix), LinComWarningSerie( OutputInfo,inputs ), |
---|
82 | LinComWarningMatrix( inputs )); |
---|
83 | |
---|
84 | Real If( EQ(Card(lcw),0), True, |
---|
85 | { |
---|
86 | Text WriteLn("[LinComWarning] THERE ARE "+IntText(Card(lcw))+" LINEAR |
---|
87 | "+ |
---|
88 | "COMBINATIONS OF INPUT SERIES CHECK LOG DIRECTORY!!", Text "E"); |
---|
89 | |
---|
90 | Text txt2File = |
---|
91 | "update "+TBsrParameter+" set |
---|
92 | co_active="+SqlFormatText("N",GesAct)+""+NL+ |
---|
93 | " |
---|
94 | "+NL+ |
---|
95 | "where co_node = "+SqlFormatText(node,GesAct)+" |
---|
96 | "+NL+ |
---|
97 | " and co_model = "+SqlFormatText(id_model,GesAct)+" |
---|
98 | "+NL+ |
---|
99 | " |
---|
100 | "+NL+ |
---|
101 | "and co_parameter in |
---|
102 | "+NL+ |
---|
103 | "( |
---|
104 | "+NL+ |
---|
105 | " |
---|
106 | "+NL+ |
---|
107 | TxtListItemQuote(lcw,","+NL)+" |
---|
108 | "+NL+ |
---|
109 | " |
---|
110 | "+NL+ |
---|
111 | ")"; |
---|
112 | |
---|
113 | Text WriteFile(logRoute,txt2File); |
---|
114 | |
---|
115 | Real False |
---|
116 | }) |
---|
117 | }; |
---|
118 | ////////////////////////////////////////////////////////////////////////////// |
---|
119 | PutDescription("It takes a set of series and check them to find linear |
---|
120 | combinations. If thre are linear combinations, it gives an error message |
---|
121 | and |
---|
122 | writes a query in a log file in the route logRoute.", |
---|
123 | LinComWarning); |
---|
124 | ////////////////////////////////////////////////////////////////////////////// |
---|
125 | |
---|
126 | |
---|
127 | ////////////////////////////////////////////////////////////////////////////// |
---|
128 | Set LinComWarningSerie(Set OutputInfo, Set inputs) |
---|
129 | ////////////////////////////////////////////////////////////////////////////// |
---|
130 | { |
---|
131 | Set series = inputs; |
---|
132 | Date TruncIni = OutputInfo::IniEstim; |
---|
133 | Date TruncEnd = OutputInfo::EndEstim; |
---|
134 | |
---|
135 | Polyn dif = SetProd(EvalSet(OutputInfo::Arima,Polyn (Set p){ p[4] })); |
---|
136 | |
---|
137 | Set seriesTrunc = EvalSet(series,Serie (Serie ser) |
---|
138 | { |
---|
139 | Serie ser2 = SubSer(ser,TruncIni,TruncEnd); |
---|
140 | Serie dif:(ser2/MaxS(Abs(ser2))) |
---|
141 | }); |
---|
142 | |
---|
143 | Matrix A = MatSetSeries(seriesTrunc); |
---|
144 | |
---|
145 | // SVD algorithm builds a set of matrix, the second matrix has the |
---|
146 | // eigenvalues. |
---|
147 | /* Set svd1 = SVDDecomposition(A*Tra(A)); */ // Luis -> SVD no es |
---|
148 | estable |
---|
149 | Set svd1 = SVD(A*Tra(A)); |
---|
150 | |
---|
151 | // We transform de second matrix into a rounded matrix because we need |
---|
152 | // to search eigenvalues = 0. The 10-10 edge is 1000 times the cholesky |
---|
153 | // rounding error so i understand that something below this limit is |
---|
154 | negligible |
---|
155 | Set svd2 = RoundSVD(svd1,False,0.5,10^(-10)); |
---|
156 | |
---|
157 | // we take de main diagonal of the eigenvalues matrix and we check if |
---|
158 | exist |
---|
159 | // eigenvalues = 0 |
---|
160 | Matrix diag = SubDiag( svd2[2] ,0 ); |
---|
161 | Real prod = MatSet(diag)[1][Card(MatSet(diag)[1])]; |
---|
162 | |
---|
163 | Set lincom = If(BinEQ(prod,?), |
---|
164 | { |
---|
165 | Set Lin.Com.Procedure(series,svd2) |
---|
166 | }, |
---|
167 | { |
---|
168 | Set If(prod, |
---|
169 | { |
---|
170 | Set Empty |
---|
171 | }, |
---|
172 | { |
---|
173 | Set Lin.Com.Procedure(series,svd2) |
---|
174 | }) |
---|
175 | }) |
---|
176 | }; |
---|
177 | ////////////////////////////////////////////////////////////////////////////// |
---|
178 | PutDescription("It takes a set of series and gives you the number of |
---|
179 | linear |
---|
180 | combinations that happens", |
---|
181 | LinComWarningSerie); |
---|
182 | ////////////////////////////////////////////////////////////////////////////// |
---|
183 | |
---|
184 | ////////////////////////////////////////////////////////////////////////////// |
---|
185 | Set LinComWarningMatrix(Set inputs) |
---|
186 | ////////////////////////////////////////////////////////////////////////////// |
---|
187 | { |
---|
188 | Set vectors = inputs; |
---|
189 | |
---|
190 | Matrix A = Tra(BinGroup("|",vectors)); |
---|
191 | |
---|
192 | // SVD algorithm builds a set of matrix, the second matrix has the |
---|
193 | // eigenvalues. |
---|
194 | /* Set svd1 = SVDDecomposition(A*Tra(A)); */ // Luis -> SVD no es |
---|
195 | estable |
---|
196 | Set svd1 = SVD(A*Tra(A)); |
---|
197 | |
---|
198 | // we transform de second matrix into a rounded matrix because we need |
---|
199 | // to search eigenvalues = 0 |
---|
200 | Set svd2 = RoundSVD(svd1,False,0.5,10^(-10)); |
---|
201 | |
---|
202 | // we take de main diagonal of the eigenvalues matrix and we check if |
---|
203 | exist |
---|
204 | // eigenvalues = 0 |
---|
205 | Matrix diag = SubDiag( svd2[2] ,0 ); |
---|
206 | Real prod = MatSet(diag)[1][Card(MatSet(diag)[1])]; |
---|
207 | |
---|
208 | Set lincom = If(BinEQ(prod,?), |
---|
209 | { |
---|
210 | Set Lin.Com.Procedure(vectors,svd2) |
---|
211 | }, |
---|
212 | { |
---|
213 | Set If(prod, |
---|
214 | { |
---|
215 | Set Empty |
---|
216 | }, |
---|
217 | { |
---|
218 | Set Lin.Com.Procedure(vectors,svd2) |
---|
219 | }) |
---|
220 | }) |
---|
221 | }; |
---|
222 | ////////////////////////////////////////////////////////////////////////////// |
---|
223 | PutDescription("It takes a set of matrix and gives you the number of |
---|
224 | linear |
---|
225 | combinations that happens", |
---|
226 | LinComWarningMatrix); |
---|
227 | ////////////////////////////////////////////////////////////////////////////// |
---|
228 | |
---|
229 | ////////////////////////////////////////////////////////////////////////////// |
---|
230 | Set Lin.Com.Procedure(Set elements, Set svd) |
---|
231 | ////////////////////////////////////////////////////////////////////////////// |
---|
232 | { |
---|
233 | // If exist eigenvalues = 0, we rounded to zero the smallest values of |
---|
234 | the |
---|
235 | // last column of the third SVD matrix, and then, the not zero values |
---|
236 | show |
---|
237 | // the linear combinations. |
---|
238 | |
---|
239 | Matrix lastCol = SubCol(svd[3],[[ Columns(svd[3]) ]]); |
---|
240 | Matrix LogicLC = Not(Not(lastCol)); |
---|
241 | Real maxDiag = MaxMatrix(SubDiag(svd[2],0)); |
---|
242 | |
---|
243 | // We take the linear combinatioNs and store them into a set |
---|
244 | Set indices = BinGroup("<<",MatSet(LogicLC)); |
---|
245 | |
---|
246 | Real c = 0; |
---|
247 | |
---|
248 | Set select = Select(elements,Real (Anything ser) |
---|
249 | { |
---|
250 | Real c := c+1; |
---|
251 | Real If(maxDiag,indices[c],True) |
---|
252 | }); |
---|
253 | |
---|
254 | Set EvalSet(select,Text (Anything x) |
---|
255 | { |
---|
256 | Text Name(x) |
---|
257 | }) |
---|
258 | }; |
---|
259 | ////////////////////////////////////////////////////////////////////////////// |
---|
260 | PutDescription("It needs a set of elements (series or matrix) and the |
---|
261 | result |
---|
262 | of a svd algorithm, and gives you tha distinct variables of elements Set |
---|
263 | that |
---|
264 | does linear combinations between them", |
---|
265 | Lin.Com.Procedure); |
---|
266 | ////////////////////////////////////////////////////////////////////////////// |
---|
267 | |
---|
268 | ////////////////////////////////////////////////////////////////////////////// |
---|
269 | Set RoundSVD(Set svd,Real trasposed, Real minSparse,Real tolerance) |
---|
270 | ////////////////////////////////////////////////////////////////////////////// |
---|
271 | { |
---|
272 | Set EvalSet(svd,Matrix (Matrix matrix) |
---|
273 | { |
---|
274 | VMatrix vmatrix = Mat2VMat( |
---|
275 | matrix, // matrix to transform |
---|
276 | trasposed, // does it trasposed? |
---|
277 | minSparse, // minSparse |
---|
278 | tolerance); // tolerance |
---|
279 | |
---|
280 | Matrix VMat2Mat(vmatrix) |
---|
281 | }) |
---|
282 | }; |
---|
283 | ////////////////////////////////////////////////////////////////////////////// |
---|
284 | PutDescription("It rounds an exit of SVD function to avoid negligible |
---|
285 | values. |
---|
286 | It needs: |
---|
287 | matrix --> matrix to transform |
---|
288 | trasposed --> does it trasposed? (True or False) |
---|
289 | minSparse --> minSparse use 0.5 by default |
---|
290 | tolerance --> round use 10^(-10) recommended |
---|
291 | ", |
---|
292 | RoundSVD); |
---|
293 | ////////////////////////////////////////////////////////////////////////////// |
---|
294 | |
---|
295 | |
---|
296 | ////////////////////////////////////////////////////////////////////////////// |
---|
297 | Set SVDDecomposition(Matrix m) |
---|
298 | ////////////////////////////////////////////////////////////////////////////// |
---|
299 | { |
---|
300 | VMatrix vm = Mat2VMat(m); |
---|
301 | |
---|
302 | Real rows = VRows(vm); |
---|
303 | Real columns = VColumns(vm); |
---|
304 | Real nonNull = VNonNullCells(vm); |
---|
305 | |
---|
306 | Real density = nonNull/(rows*columns); |
---|
307 | |
---|
308 | // Set If(density <= 0.05, SVD(m,"Sparse"), SVD(m,"Jacobi")) |
---|
309 | Set If(density <= 0.01, SVD(m,"Sparse"), SVD(m)) |
---|
310 | }; |
---|
311 | ////////////////////////////////////////////////////////////////////////////// |
---|
312 | PutDescription("It does the SVD decomposition choosing betwwen Sparse and |
---|
313 | Jacobi method according to the density of de matrix m. |
---|
314 | ", |
---|
315 | SVDDecomposition); |
---|
316 | ////////////////////////////////////////////////////////////////////////////// |
---|