1 | ////////////////////////////////////////////////////////////////////////////// |
---|
2 | // FILE : |
---|
3 | // PURPOSE : |
---|
4 | ////////////////////////////////////////////////////////////////////////////// |
---|
5 | |
---|
6 | |
---|
7 | //_.-._.-._.-._.-._.-._.-._.-._.-._.-._.-._.-._.-._.-._.-._.-._.-._.-._.-._.-. |
---|
8 | NameBlock Logit = |
---|
9 | //_.-._.-._.-._.-._.-._.-._.-._.-._.-._.-._.-._.-._.-._.-._.-._.-._.-._.-._.-. |
---|
10 | [[ |
---|
11 | Real _.ctInfo = 0; |
---|
12 | Real _.dEpsilon = DiffDist; |
---|
13 | Real _.maxIter = MaxIter; |
---|
14 | Real _.tolerance = 10^(-8); |
---|
15 | Real _.tolerance.Rec = 10^(-4); |
---|
16 | Real _.probability.Init = 1/2; |
---|
17 | Real _.num.Step = 8; |
---|
18 | |
---|
19 | Matrix _Error(Matrix y, Matrix p) |
---|
20 | { |
---|
21 | y-p //p = Probability(X, B) |
---|
22 | }; |
---|
23 | |
---|
24 | Matrix _Gradient(Matrix X, Matrix error) |
---|
25 | { |
---|
26 | Tra(Tra(error)*X) //error = y - Probability(X, B) |
---|
27 | }; |
---|
28 | |
---|
29 | Matrix _Hessian(VMatrix vX, Matrix p) |
---|
30 | { |
---|
31 | VMatrix W = Mat2VMat(p$*RSum(-p,1)); |
---|
32 | VMatrix V = Eye(Rows(p), Rows(p), 0, W); |
---|
33 | VMat2Mat(-Tra(V*vX)*vX) |
---|
34 | }; |
---|
35 | |
---|
36 | Matrix _Probability(Matrix X, Matrix B, Matrix LogitGroupProb) |
---|
37 | { |
---|
38 | Matrix p = RPow(RSum(Exp(-X*B-LogitGroupProb), 1), -1); |
---|
39 | p |
---|
40 | }; |
---|
41 | |
---|
42 | Matrix _MLnLikelyhood(Matrix y, Matrix p) |
---|
43 | { |
---|
44 | y$*Log(p)+RSum(-y,1)$*Log(RSum(-p,1)) |
---|
45 | }; |
---|
46 | |
---|
47 | Matrix _MLikelyhood(Matrix mLnLikelyhood) |
---|
48 | { |
---|
49 | Exp(mLnLikelyhood) |
---|
50 | }; |
---|
51 | |
---|
52 | Set Estimate.MaxLikelyhood |
---|
53 | ( |
---|
54 | Matrix y, // Matriz y de variable salida binaria |
---|
55 | Matrix XIni, // Matriz x de variables entrada |
---|
56 | Matrix B0Ini, // Matriz de parametros iniciales |
---|
57 | Anything ctInfo, // Un real 0 sin constante, |
---|
58 | // Un real 1 estima constante, |
---|
59 | // Una matriz |
---|
60 | Real dEpsilon, // Diferencia de paso |
---|
61 | Real maxIter, // Numero maximo de iteraciones |
---|
62 | Real tolerance // Tolerancia al error |
---|
63 | ) |
---|
64 | { |
---|
65 | Text grCtInfo = Grammar(ctInfo); |
---|
66 | |
---|
67 | Matrix X = Case |
---|
68 | ( |
---|
69 | /* |
---|
70 | And(grCtInfo=="Real", EQ(ctInfo, 0)), XIni, |
---|
71 | And(grCtInfo=="Real", EQ(ctInfo, 1)), |
---|
72 | { |
---|
73 | XIni|Rand(Rows(XIni), 1, 1, 1) |
---|
74 | }, |
---|
75 | */ |
---|
76 | grCtInfo=="Matrix", XIni, |
---|
77 | 1, XIni |
---|
78 | ); |
---|
79 | |
---|
80 | Matrix IdCt = Case |
---|
81 | ( |
---|
82 | // And(grCtInfo=="Real", EQ(ctInfo, 0)), Rand(Rows(XIni), 1, 0, 0), |
---|
83 | // And(grCtInfo=="Real", EQ(ctInfo, 1)), Rand(Rows(XIni), 1, 0, 0), |
---|
84 | grCtInfo=="Matrix", ctInfo, |
---|
85 | 1, Rand(Rows(XIni), 1, 0, 0) |
---|
86 | ); |
---|
87 | |
---|
88 | Matrix B0 = Case |
---|
89 | ( |
---|
90 | grCtInfo=="Matrix", B0Ini, |
---|
91 | 1, B0Ini |
---|
92 | ); |
---|
93 | |
---|
94 | Real n = Columns(X); // Number of variables |
---|
95 | Real N = Rows(X); // Number of data |
---|
96 | |
---|
97 | Text iniMsg = |
---|
98 | "Model Logit Init ("+IntText(N)+"x"+IntText(n)+")"+Time; |
---|
99 | Real WriteLn(iniMsg); |
---|
100 | |
---|
101 | VMatrix vX = Mat2VMat(X); |
---|
102 | |
---|
103 | Matrix zeroMat = Rand(N, 1, 0, 0); |
---|
104 | Matrix oneMat = Rand(N, 1, 1, 1); |
---|
105 | Matrix negInfMat = Rand(N, 1, -1/0, -1/0); |
---|
106 | Matrix tolMat = Rand(N, 1, tolerance, tolerance); |
---|
107 | |
---|
108 | Real completeTime = 0; |
---|
109 | Real difTimeMin = 0; |
---|
110 | Real exit = 0; |
---|
111 | Matrix B = Copy(B0); |
---|
112 | Real iter = 0; |
---|
113 | Real oldLnLikelyhood = 0; |
---|
114 | |
---|
115 | Set cycle = Empty; |
---|
116 | |
---|
117 | Real While(Not(exit), |
---|
118 | { |
---|
119 | Real time0 = Copy(Time); |
---|
120 | |
---|
121 | //Real CMsg::Trace::show(1, "Printing oldLnLikelyhood="<<oldLnLikelyhood); |
---|
122 | Matrix p = _Probability(X, B, IdCt); |
---|
123 | |
---|
124 | //Real CMsg::Trace::show(1, "Printing p="<<p); |
---|
125 | Matrix error = _Error(y, p); |
---|
126 | |
---|
127 | Matrix G = _Gradient(X, error); |
---|
128 | Real time0.1 = Copy(Time); |
---|
129 | Matrix H = _Hessian(vX, p); |
---|
130 | Real time0.2 = Copy(Time); |
---|
131 | Matrix dif = MinimumResidualsSolve(H, G); |
---|
132 | |
---|
133 | Real norm = MatFrobeniusNorm(G); |
---|
134 | Real advance = MatFrobeniusNorm(dif); |
---|
135 | Real maxAbsDif = MatMax(Abs(dif)); |
---|
136 | |
---|
137 | |
---|
138 | Matrix mLnLikelyhood = _MLnLikelyhood(y, p); |
---|
139 | Matrix mLLCorrect = IfMat(EQ(Abs(error), oneMat), negInfMat, |
---|
140 | IfMat(LT(Abs(error), tolMat), zeroMat, mLnLikelyhood)); |
---|
141 | |
---|
142 | Real lnLikelyhood = MatSum(mLLCorrect); |
---|
143 | //Real CMsg::Trace::show(1, "Printing dif"<<dif); |
---|
144 | //Real CMsg::Trace::show(1, "Printing mLnLikelyhood"<<mLnLikelyhood); |
---|
145 | //Real CMsg::Trace::show(1, "Printing mLLCorrect"<<mLLCorrect); |
---|
146 | //Real CMsg::Trace::show(1, "Printing error"<<error); |
---|
147 | |
---|
148 | //Real CMsg::Trace::show(1, "Printing lnLikelyhood="<<lnLikelyhood); |
---|
149 | |
---|
150 | Real difTimeMin := (time0.2-time0.1)+difTimeMin; |
---|
151 | |
---|
152 | Real difTime = Copy(Time)-time0; |
---|
153 | Real completeTime := completeTime+difTime; |
---|
154 | Real exitTreatment = Case |
---|
155 | ( |
---|
156 | IsUnknown(advance), |
---|
157 | { |
---|
158 | Real CMsg::Trace::show(1, "Advance is unknown"); |
---|
159 | Real exit:=1 |
---|
160 | }, |
---|
161 | GE(iter, maxIter), |
---|
162 | { |
---|
163 | Real CMsg::Trace::show(1, "MaxIter reached"); |
---|
164 | Real exit:=1 |
---|
165 | }, |
---|
166 | LT(norm, dEpsilon), |
---|
167 | { |
---|
168 | Real CMsg::Trace::show(1, "Norm lower than "<<dEpsilon); |
---|
169 | Real exit:=1 |
---|
170 | }, |
---|
171 | LT(maxAbsDif, tolerance), |
---|
172 | { |
---|
173 | Real CMsg::Trace::show(1, "MaxAbsDif lower than "<<tolerance); |
---|
174 | Real exit:=1 |
---|
175 | }, |
---|
176 | LT(Abs(oldLnLikelyhood - lnLikelyhood), dEpsilon), |
---|
177 | { |
---|
178 | Real CMsg::Trace::show(1, |
---|
179 | "LnLikelihood is stable: lnLikelyhood ="<<lnLikelyhood+ |
---|
180 | " oldLnLikelyhood ="<<oldLnLikelyhood); |
---|
181 | Real exit:=1 |
---|
182 | }, |
---|
183 | 1, |
---|
184 | { |
---|
185 | Text exitMsg = " Logit model iteration("+ |
---|
186 | FormatReal(iter, "%0"+IntText(Floor(Log10(maxIter)+1))+".lf")+ |
---|
187 | ")"+" "+ |
---|
188 | " LogLikelyhood = "+FormatReal(lnLikelyhood, "%.4E")+" "+ |
---|
189 | " MaxAbsDif = "+FormatReal(maxAbsDif, "%.4E")+" "+ |
---|
190 | " Gradient Norm = "+FormatReal(norm, "%.4E")+" "+ |
---|
191 | " Time = "+FormatReal(difTime, "%.4lf"); |
---|
192 | Real CMsg::Trace::show(1, exitMsg); |
---|
193 | Real iter := iter+1; |
---|
194 | Real oldLnLikelyhood := Copy(lnLikelyhood); |
---|
195 | Matrix B:=(Matrix B-dif); |
---|
196 | Real 0 |
---|
197 | } |
---|
198 | ); |
---|
199 | Real exitCycle = If(EQ(exitTreatment, 1), |
---|
200 | { |
---|
201 | Set cycle := SetOfAnything |
---|
202 | (B, p, G, H, dif, norm, advance, |
---|
203 | maxAbsDif, error, lnLikelyhood, oldLnLikelyhood, ctInfo, X, XIni, y, |
---|
204 | mLLCorrect); |
---|
205 | 1 |
---|
206 | }, 0) |
---|
207 | }); |
---|
208 | Real time2 = Copy(Time); |
---|
209 | /* |
---|
210 | Matrix p = _Probability(X, B); |
---|
211 | |
---|
212 | Matrix error = _Error(y, p); |
---|
213 | |
---|
214 | Matrix G = _Gradient(X, error); |
---|
215 | Matrix H = _Hessian(vX, p); |
---|
216 | Matrix dif = MinimumResidualsSolve(H, G); |
---|
217 | |
---|
218 | Real norm = MatFrobeniusNorm(G); |
---|
219 | Real advance = MatFrobeniusNorm(dif); |
---|
220 | Real maxAbsDif = MatMax(Abs(dif)); |
---|
221 | Matrix mLnLikelyhood = _MLnLikelyhood(y, p); |
---|
222 | Real lnLikelyhood = MatSum(mLnLikelyhood); |
---|
223 | */ |
---|
224 | Real difTime2 = Copy(Time)-time2; |
---|
225 | Real totalTime = completeTime+difTime2; |
---|
226 | Text endMsg = |
---|
227 | "Model Logit Ended. Time:"<<totalTime+" SplitTime:"<<difTimeMin+NL+NL; |
---|
228 | Real WriteLn(endMsg); |
---|
229 | |
---|
230 | /* |
---|
231 | SetOfAnything |
---|
232 | (B, p, G, H, dif, norm, advance, |
---|
233 | maxAbsDif, error, lnLikelyhood, oldLnLikelyhood) |
---|
234 | */ |
---|
235 | cycle |
---|
236 | }; |
---|
237 | |
---|
238 | Set Estimate.MaxLikelyhood.Default(Matrix y, Matrix X) |
---|
239 | { |
---|
240 | Matrix B0Ini = Rand(Columns(X), 1, 0, 0); |
---|
241 | Estimate.MaxLikelyhood |
---|
242 | ( |
---|
243 | y, // Matriz y de variable salida binaria |
---|
244 | X, // Matriz x de variables entrada |
---|
245 | B0Ini, |
---|
246 | _.ctInfo, |
---|
247 | _.dEpsilon, // Diferencia de paso |
---|
248 | _.maxIter, // Numero maximo de iteraciones |
---|
249 | _.tolerance // Tolerancia al error |
---|
250 | ) |
---|
251 | }; |
---|
252 | Set Estimate.MaxLikelyhood.Constant(Matrix y, Matrix X, Matrix constant) |
---|
253 | { |
---|
254 | Matrix B0Ini = Rand(Columns(X), 1, 0, 0); |
---|
255 | Estimate.MaxLikelyhood |
---|
256 | ( |
---|
257 | y, // Matriz y de variable salida binaria |
---|
258 | X, // Matriz x de variables entrada |
---|
259 | B0Ini, |
---|
260 | constant, |
---|
261 | _.dEpsilon, // Diferencia de paso |
---|
262 | _.maxIter, // Numero maximo de iteraciones |
---|
263 | _.tolerance // Tolerancia al error |
---|
264 | ) |
---|
265 | }; |
---|
266 | Set Estimate.MaxLikelyhood.ProbB0 |
---|
267 | ( |
---|
268 | Matrix y, |
---|
269 | Matrix X, |
---|
270 | Matrix B0Ini, |
---|
271 | Real prob |
---|
272 | ) |
---|
273 | { |
---|
274 | Matrix probMat = Rand(Rows(y), 1, prob, prob); |
---|
275 | Matrix constant = Log(probMat$/RSum(-probMat, 1)); |
---|
276 | |
---|
277 | Estimate.MaxLikelyhood |
---|
278 | ( |
---|
279 | y, // Matriz y de variable salida binaria |
---|
280 | X, // Matriz x de variables entrada |
---|
281 | B0Ini, |
---|
282 | constant, |
---|
283 | _.dEpsilon, // Diferencia de paso |
---|
284 | _.maxIter, // Numero maximo de iteraciones |
---|
285 | _.tolerance // Tolerancia al error |
---|
286 | ) |
---|
287 | }; |
---|
288 | |
---|
289 | Set Estimate.MaxLikelyhood.ProbRec |
---|
290 | ( |
---|
291 | Matrix y, |
---|
292 | Matrix X, |
---|
293 | Matrix B0Cur, |
---|
294 | Real step, |
---|
295 | Real tolerance, |
---|
296 | Real probCur, |
---|
297 | Real probEnd |
---|
298 | ) |
---|
299 | { |
---|
300 | Text iniMsg = NL+NL+"Model Logit (p="<<probCur+") "+Time; |
---|
301 | Real WriteLn(iniMsg); |
---|
302 | |
---|
303 | Set logitResult = Estimate.MaxLikelyhood.ProbB0(y, X, B0Cur, probCur); |
---|
304 | If(LT(Abs(probCur - probEnd), tolerance), logitResult, |
---|
305 | { |
---|
306 | Real prob = probCur*step; |
---|
307 | Matrix B0 = logitResult::B; |
---|
308 | Estimate.MaxLikelyhood.ProbRec |
---|
309 | (y, X, B0, step, tolerance, prob, probEnd) |
---|
310 | }) |
---|
311 | }; |
---|
312 | |
---|
313 | Set Estimate.MaxLikelyhood.Prob |
---|
314 | ( |
---|
315 | Matrix y, |
---|
316 | Matrix X, |
---|
317 | Real prob |
---|
318 | ) |
---|
319 | { |
---|
320 | Real step = (prob/_.probability.Init)^(1/_.num.Step); |
---|
321 | Matrix B0Ini = Rand(Columns(X), 1, 0, 0); |
---|
322 | Estimate.MaxLikelyhood.ProbRec |
---|
323 | (y, X, B0Ini, step, _.tolerance.Rec, _.probability.Init, prob) |
---|
324 | }; |
---|
325 | |
---|
326 | Set Diagnosis |
---|
327 | ( |
---|
328 | Matrix y, |
---|
329 | Matrix X, |
---|
330 | Matrix B, |
---|
331 | Matrix error, |
---|
332 | Real lnLikelyhood, |
---|
333 | Set names, |
---|
334 | Matrix H //Hessian |
---|
335 | ) |
---|
336 | { |
---|
337 | Text iniMsg = |
---|
338 | "Model Logit Diagnosis. Init Time:"+Time; |
---|
339 | Real WriteLn(iniMsg); |
---|
340 | |
---|
341 | Real N = Rows(X); // |
---|
342 | Real n = Columns(X); // Parameter number |
---|
343 | |
---|
344 | Matrix FIM = -H; // Fisher Information Matrix |
---|
345 | Matrix COV = SVDInverse(FIM); // Varianze Covarianza Parameter Matrix |
---|
346 | |
---|
347 | Set Parameters = For(1, Columns(X), Set(Real k) |
---|
348 | { |
---|
349 | Text name = names[k]; |
---|
350 | Real value = MatDat(B, k, 1); |
---|
351 | Real var = MatDat(COV, k, k); |
---|
352 | Real std = SqRt(var); |
---|
353 | Real tStudent = value/std; |
---|
354 | Real refProb = 2*(1-DistT(Abs(tStudent), N-n-1)); |
---|
355 | ParameterInf |
---|
356 | ( |
---|
357 | name, //Name |
---|
358 | 0, //Factor |
---|
359 | 0, //Order |
---|
360 | value, //Value |
---|
361 | std, //StDs |
---|
362 | tStudent, //TStudent |
---|
363 | refProb //RefuseProb |
---|
364 | ) |
---|
365 | }); |
---|
366 | |
---|
367 | Real VarTot = MatVar(y); |
---|
368 | Real VarError = MatVar(error); |
---|
369 | Real R2 = 1-VarError/VarTot; |
---|
370 | |
---|
371 | Real MaxProb = MatSum(y)/N; |
---|
372 | Real lnLikelyhoodIntercep = |
---|
373 | MatSum(_MLnLikelyhood(y, Rand(N, 1, MaxProb, MaxProb))); |
---|
374 | |
---|
375 | Real Nagelkerke.R2 = 1-(Exp((2/N)*(lnLikelyhoodIntercep-lnLikelyhood))); |
---|
376 | Real Nagelkerke.R2Max = 1-Exp((2/N)*lnLikelyhoodIntercep); |
---|
377 | Real Nagelkerke.R2MaxRescaled = Nagelkerke.R2/Nagelkerke.R2Max; |
---|
378 | Text endMsg = |
---|
379 | "Model Logit Diagnosis. End Time:"+Time+NL; |
---|
380 | Real WriteLn(endMsg); |
---|
381 | |
---|
382 | SetOfAnything |
---|
383 | ( |
---|
384 | Parameters, |
---|
385 | FIM, |
---|
386 | COV, |
---|
387 | MaxProb, |
---|
388 | R2, |
---|
389 | Nagelkerke.R2, |
---|
390 | Nagelkerke.R2Max, |
---|
391 | Nagelkerke.R2MaxRescaled, |
---|
392 | lnLikelyhood, |
---|
393 | lnLikelyhoodIntercep |
---|
394 | ) |
---|
395 | }; |
---|
396 | |
---|
397 | Set PreTesting(Matrix Y, Matrix X, Set varNames) |
---|
398 | { |
---|
399 | Text iniMsg = |
---|
400 | "Model Logit PreTesting. Init Time:"+Time; |
---|
401 | Real WriteLn(iniMsg); |
---|
402 | |
---|
403 | Real WriteLn(" Checking column stability..."+Time); |
---|
404 | Matrix unkX = IsUnknown(X); |
---|
405 | Matrix posInfX = IsPosInf(X); |
---|
406 | Matrix negInfX = IsNegInf(X); |
---|
407 | |
---|
408 | Matrix unkY = IsUnknown(Y); |
---|
409 | Matrix posInfY = IsPosInf(Y); |
---|
410 | Matrix negInfY = IsNegInf(Y); |
---|
411 | |
---|
412 | Real isUnkX = MatSum(unkX); |
---|
413 | Real isPosInfX = MatSum(posInfX); |
---|
414 | Real isNegInfX = MatSum(negInfX); |
---|
415 | |
---|
416 | Real isUnkY = MatSum(unkY); |
---|
417 | Real isPosInfY = MatSum(posInfY); |
---|
418 | Real isNegInfY = MatSum(negInfY); |
---|
419 | |
---|
420 | Real n = Rows(Y); |
---|
421 | Real balanced = MatSum(Y)/n; |
---|
422 | |
---|
423 | Real valid = |
---|
424 | Not(Or(isUnkX, isPosInfX, isNegInfX, isUnkY, isPosInfY, isNegInfY)); |
---|
425 | |
---|
426 | Set checkValid = If(EQ(valid, 1), Empty, |
---|
427 | { |
---|
428 | Set data = For(1, Card(varNames), Set(Real k) |
---|
429 | { |
---|
430 | Text name = varNames[k]; |
---|
431 | Real kUnkX = MatSum(SubCol(unkX, [[k]])); |
---|
432 | Real kPosInfX = MatSum(SubCol(posInfX, [[k]])); |
---|
433 | Real kNegInfX = MatSum(SubCol(negInfX, [[k]])); |
---|
434 | SetOfAnything(name, kUnkX, kPosInfX, kNegInfX) |
---|
435 | }); |
---|
436 | Set header = SetOfText("VarName", "Unk", "PosInf", "NegInf"); |
---|
437 | SetOfSet(header)<< |
---|
438 | SetOfSet(SetOfAnything("Y", isUnkY, isPosInfY, isNegInfY))<< |
---|
439 | data |
---|
440 | }); |
---|
441 | Real WriteLn(" Adjusting X matrix..."+Time); |
---|
442 | |
---|
443 | Matrix YPre = |
---|
444 | If(isUnkY, IfMat(unkY, VMat2Mat(Eye(Rows(Y), 1, 0, 0)), Y), Y); |
---|
445 | Matrix XPre = |
---|
446 | If(isUnkX, IfMat(unkX, VMat2Mat(Eye(Rows(X), Columns(X), 0, 0)), X), X); |
---|
447 | |
---|
448 | VMatrix vXPre = Mat2VMat(XPre); |
---|
449 | Set index = Range(1, Columns(X), 1); |
---|
450 | // Real WriteLn(" Correlation Y|X matrix..."+Time); |
---|
451 | // Matrix corVarX = Cor(Tra(YPre|XPre)); |
---|
452 | |
---|
453 | Real WriteLn(" X information column..."+Time); |
---|
454 | Set ColInfo = For(1, Card(varNames), Set(Real k) |
---|
455 | { |
---|
456 | Text name = varNames[k]; |
---|
457 | Matrix col = SubCol(XPre, [[k]]); |
---|
458 | Real min = MatMin(col); |
---|
459 | Real max = MatMax(col); |
---|
460 | Real stds = MatStDs(col); |
---|
461 | Real avr = MatAvr(col); |
---|
462 | Matrix freq = Frequency(col, 100, min, max); |
---|
463 | Matrix freq01 = Frequency(col$*Y, 100, min, max); |
---|
464 | Matrix ratioDisc = freq01$/freq; |
---|
465 | Real minValue = MatDat(freq01, 1, 2); |
---|
466 | Real maxValue = MatDat(freq01, 100, 2); |
---|
467 | Real maxRatio = MatDat(ratioDisc, 100, 2)/balanced; |
---|
468 | Real dicotomicRatio = (minValue+maxValue)/n ; |
---|
469 | |
---|
470 | VMatrix y = SubCol(vXPre, [[k]]); |
---|
471 | VMatrix x = SubCol(vXPre, index-[[k]]); |
---|
472 | |
---|
473 | Set linReg = LinReg::Get.GeneralInformation(y, x); |
---|
474 | Real R2MultiColinearity = linReg::R2; |
---|
475 | |
---|
476 | SetOfAnything |
---|
477 | ( |
---|
478 | name, |
---|
479 | min, |
---|
480 | max, |
---|
481 | stds, |
---|
482 | avr, |
---|
483 | freq, |
---|
484 | freq01, |
---|
485 | ratioDisc, |
---|
486 | maxRatio, |
---|
487 | maxValue, |
---|
488 | dicotomicRatio, |
---|
489 | R2MultiColinearity |
---|
490 | ) |
---|
491 | }); |
---|
492 | |
---|
493 | Text endMsg = |
---|
494 | "Model Logit PreTesting. End Time:"+Time+NL; |
---|
495 | Real WriteLn(endMsg); |
---|
496 | |
---|
497 | SetOfAnything |
---|
498 | (unkX, posInfX, negInfX, unkY, posInfY, negInfY, valid, checkValid, |
---|
499 | balanced, /*corVarX,*/ |
---|
500 | ColInfo, YPre, XPre) |
---|
501 | } |
---|
502 | ]]; |
---|
503 | //_.-._.-._.-._.-._.-._.-._.-._.-._.-._.-._.-._.-._.-._.-._.-._.-._.-._.-._.-. |
---|
504 | |
---|