| 1 | ////////////////////////////////////////////////////////////////////////////// |
|---|
| 2 | // FILE: def_strategy_logit.tol |
|---|
| 3 | // PURPOSE: Define la estrategia de estimación asociada al método |
|---|
| 4 | // Logit de TOL que está basado en un método de estimación |
|---|
| 5 | // puntual máximo verosímil. |
|---|
| 6 | ////////////////////////////////////////////////////////////////////////////// |
|---|
| 7 | |
|---|
| 8 | ////////////////////////////////////////////////////////////////////////////// |
|---|
| 9 | Class @MMS.StrategyVLogit : @MMS.Strategy |
|---|
| 10 | ////////////////////////////////////////////////////////////////////////////// |
|---|
| 11 | { |
|---|
| 12 | // Especificaciones propias: |
|---|
| 13 | // (susceptibles de convertirse en clases) |
|---|
| 14 | // * NameBlock de comunicación entre _BuildMatrices y _DoEstimation |
|---|
| 15 | // [[ Text name, Matrix outData, Matrix inpData ]] |
|---|
| 16 | |
|---|
| 17 | //////////////////////////////////////////////////////////////////////////// |
|---|
| 18 | // Métodos no triviales: |
|---|
| 19 | // * Execute() |
|---|
| 20 | // ¿? Real SetEstimationIntervalMinMax() |
|---|
| 21 | // |
|---|
| 22 | // * Real _AfterSetModel() |
|---|
| 23 | // * Set _BuildMatrices() |
|---|
| 24 | // * Set _DoEstimation(Set AllModelDef) |
|---|
| 25 | |
|---|
| 26 | //////////////////////////////////////////////////////////////////////////// |
|---|
| 27 | Real SetEstimationIntervalMinMax(Real void) |
|---|
| 28 | //////////////////////////////////////////////////////////////////////////// |
|---|
| 29 | { |
|---|
| 30 | Real 0 |
|---|
| 31 | }; |
|---|
| 32 | |
|---|
| 33 | //////////////////////////////////////////////////////////////////////////// |
|---|
| 34 | // Prepara los parametros configurables para cada output a partir del |
|---|
| 35 | // modelo establecido en SetModel. Este metodo es invocado |
|---|
| 36 | // automaticamente desde el metodo SetModel implementado en la clase |
|---|
| 37 | // base. |
|---|
| 38 | Real _AfterSetModel(Real void) |
|---|
| 39 | //////////////////////////////////////////////////////////////////////////// |
|---|
| 40 | { |
|---|
| 41 | // (pgea) Considero interesante obviar el uso de esta función... |
|---|
| 42 | Real void |
|---|
| 43 | }; |
|---|
| 44 | |
|---|
| 45 | //////////////////////////////////////////////////////////////////////////// |
|---|
| 46 | // recorre todos los outputs en model y construye su ModelDef |
|---|
| 47 | // correspondiente. Advierte de posible informacion contenida en |
|---|
| 48 | // @MMS.Model que no es usada, por ejemplo informacion de jerarquia. |
|---|
| 49 | |
|---|
| 50 | //////////////////////////////////////////////////////////////////////////// |
|---|
| 51 | Set _BuildMatrices(Real void) |
|---|
| 52 | //////////////////////////////////////////////////////////////////////////// |
|---|
| 53 | { |
|---|
| 54 | @MMS.ModelAdapter model = @MMS.ModelAdapter::Default(_.model[1]); |
|---|
| 55 | Set submodels_ = model::GetSubmodels(?); // active |
|---|
| 56 | |
|---|
| 57 | // Comprueba que son VLogit |
|---|
| 58 | Set submodels = Select(submodels_, Real (@MMS.SubmodelAdapter submodel) { |
|---|
| 59 | If(submodel::GetModelType(?)=="Logit", 1, { |
|---|
| 60 | WriteLn("El submodelo '"<<submodel::GetIndex(?) |
|---|
| 61 | <<"' no es del tipo Logit.","E"); |
|---|
| 62 | 0}) |
|---|
| 63 | }); |
|---|
| 64 | |
|---|
| 65 | Set all_modeldef = EvalSet(submodels, NameBlock (@MMS.SubmodelAdapter submodel) { |
|---|
| 66 | |
|---|
| 67 | @MMS.OutputAdapter output = submodel::GetOutput(?); |
|---|
| 68 | |
|---|
| 69 | Text outputName = output::GetIndex(0); |
|---|
| 70 | Matrix outputData = output::GetData(?); |
|---|
| 71 | |
|---|
| 72 | Set expTerms = submodel::GetExpTermsLinear(?); // active |
|---|
| 73 | |
|---|
| 74 | Set matrices = EvalSet(expTerms, Matrix (@MMS.ExpTermLinearAdapter expTerm) { |
|---|
| 75 | expTerm::GetData(?) |
|---|
| 76 | }); |
|---|
| 77 | Matrix inputData = BinGroup("|", matrices); |
|---|
| 78 | |
|---|
| 79 | //! Apaño para mantener el nombre de los parámetros... |
|---|
| 80 | Set parameterNames = EvalSet(expTerms, Text(@MMS.ExpTermLinearAdapter expTerm) { |
|---|
| 81 | expTerm::GetParameter(?)::GetIndex(?) |
|---|
| 82 | }); |
|---|
| 83 | Set parameterIndices = For(1, Card(parameterNames), Real (Real i) { |
|---|
| 84 | Eval("Real "<<parameterNames[i]<<" = Copy(i)") |
|---|
| 85 | }); |
|---|
| 86 | |
|---|
| 87 | NameBlock [[ |
|---|
| 88 | outputName, |
|---|
| 89 | parameterIndices, |
|---|
| 90 | outputData, |
|---|
| 91 | inputData |
|---|
| 92 | ]] |
|---|
| 93 | }) |
|---|
| 94 | }; |
|---|
| 95 | |
|---|
| 96 | //_.-._.-._.-._.-._.-._.-._.-._.-._.-._.-._.-._.-._.-._.-._.-._.-._.-._.-._.-. |
|---|
| 97 | NameBlock Logit = |
|---|
| 98 | //_.-._.-._.-._.-._.-._.-._.-._.-._.-._.-._.-._.-._.-._.-._.-._.-._.-._.-._.-. |
|---|
| 99 | [[ |
|---|
| 100 | Real _.ctInfo = 0; |
|---|
| 101 | Real _.dEpsilon = DiffDist; |
|---|
| 102 | Real _.maxIter = MaxIter; |
|---|
| 103 | Real _.tolerance = 10^(-8); |
|---|
| 104 | Real _.tolerance.Rec = 10^(-4); |
|---|
| 105 | Real _.probability.Init = 1/2; |
|---|
| 106 | Real _.num.Step = 8; |
|---|
| 107 | |
|---|
| 108 | Matrix _Error(Matrix y, Matrix p) |
|---|
| 109 | { |
|---|
| 110 | y-p //p = Probability(X, B) |
|---|
| 111 | }; |
|---|
| 112 | |
|---|
| 113 | Matrix _Gradient(Matrix X, Matrix error) |
|---|
| 114 | { |
|---|
| 115 | Tra(Tra(error)*X) //error = y - Probability(X, B) |
|---|
| 116 | }; |
|---|
| 117 | |
|---|
| 118 | Matrix _Hessian(VMatrix vX, Matrix p) |
|---|
| 119 | { |
|---|
| 120 | VMatrix W = Mat2VMat(p$*RSum(-p,1)); |
|---|
| 121 | VMatrix V = Eye(Rows(p), Rows(p), 0, W); |
|---|
| 122 | VMat2Mat(-Tra(V*vX)*vX) |
|---|
| 123 | }; |
|---|
| 124 | |
|---|
| 125 | Matrix _Probability(Matrix X, Matrix B, Matrix LogitGroupProb) |
|---|
| 126 | { |
|---|
| 127 | Matrix p = RPow(RSum(Exp(-X*B-LogitGroupProb), 1), -1); |
|---|
| 128 | p |
|---|
| 129 | }; |
|---|
| 130 | |
|---|
| 131 | Matrix _MLnLikelyhood(Matrix y, Matrix p) |
|---|
| 132 | { |
|---|
| 133 | y$*Log(p)+RSum(-y,1)$*Log(RSum(-p,1)) |
|---|
| 134 | }; |
|---|
| 135 | |
|---|
| 136 | Matrix _MLikelyhood(Matrix mLnLikelyhood) |
|---|
| 137 | { |
|---|
| 138 | Exp(mLnLikelyhood) |
|---|
| 139 | }; |
|---|
| 140 | |
|---|
| 141 | Set Estimate.MaxLikelyhood |
|---|
| 142 | ( |
|---|
| 143 | Matrix y, // Matriz y de variable salida binaria |
|---|
| 144 | Matrix XIni, // Matriz x de variables entrada |
|---|
| 145 | Matrix B0Ini, // Matriz de parametros iniciales |
|---|
| 146 | Anything ctInfo, // Un real 0 sin constante, |
|---|
| 147 | // Un real 1 estima constante, |
|---|
| 148 | // Una matriz |
|---|
| 149 | Real dEpsilon, // Diferencia de paso |
|---|
| 150 | Real maxIter, // Numero maximo de iteraciones |
|---|
| 151 | Real tolerance // Tolerancia al error |
|---|
| 152 | ) |
|---|
| 153 | { |
|---|
| 154 | Text grCtInfo = Grammar(ctInfo); |
|---|
| 155 | |
|---|
| 156 | Matrix X = Case |
|---|
| 157 | ( |
|---|
| 158 | /* |
|---|
| 159 | And(grCtInfo=="Real", EQ(ctInfo, 0)), XIni, |
|---|
| 160 | And(grCtInfo=="Real", EQ(ctInfo, 1)), |
|---|
| 161 | { |
|---|
| 162 | XIni|Rand(Rows(XIni), 1, 1, 1) |
|---|
| 163 | }, |
|---|
| 164 | */ |
|---|
| 165 | grCtInfo=="Matrix", XIni, |
|---|
| 166 | 1, XIni |
|---|
| 167 | ); |
|---|
| 168 | |
|---|
| 169 | Matrix IdCt = Case |
|---|
| 170 | ( |
|---|
| 171 | // And(grCtInfo=="Real", EQ(ctInfo, 0)), Rand(Rows(XIni), 1, 0, 0), |
|---|
| 172 | // And(grCtInfo=="Real", EQ(ctInfo, 1)), Rand(Rows(XIni), 1, 0, 0), |
|---|
| 173 | grCtInfo=="Matrix", ctInfo, |
|---|
| 174 | 1, Rand(Rows(XIni), 1, 0, 0) |
|---|
| 175 | ); |
|---|
| 176 | |
|---|
| 177 | Matrix B0 = Case |
|---|
| 178 | ( |
|---|
| 179 | grCtInfo=="Matrix", B0Ini, |
|---|
| 180 | 1, B0Ini |
|---|
| 181 | ); |
|---|
| 182 | |
|---|
| 183 | Real n = Columns(X); // Number of variables |
|---|
| 184 | Real N = Rows(X); // Number of data |
|---|
| 185 | |
|---|
| 186 | Text iniMsg = |
|---|
| 187 | "Model Logit Init ("+IntText(N)+"x"+IntText(n)+")"+Time; |
|---|
| 188 | Real WriteLn(iniMsg); |
|---|
| 189 | |
|---|
| 190 | VMatrix vX = Mat2VMat(X); |
|---|
| 191 | |
|---|
| 192 | Matrix zeroMat = Rand(N, 1, 0, 0); |
|---|
| 193 | Matrix oneMat = Rand(N, 1, 1, 1); |
|---|
| 194 | Matrix negInfMat = Rand(N, 1, -1/0, -1/0); |
|---|
| 195 | Matrix tolMat = Rand(N, 1, tolerance, tolerance); |
|---|
| 196 | |
|---|
| 197 | Real completeTime = 0; |
|---|
| 198 | Real difTimeMin = 0; |
|---|
| 199 | Real exit = 0; |
|---|
| 200 | Matrix B = Copy(B0); |
|---|
| 201 | Real iter = 0; |
|---|
| 202 | Real oldLnLikelyhood = 0; |
|---|
| 203 | |
|---|
| 204 | Set cycle = Empty; |
|---|
| 205 | |
|---|
| 206 | Real While(Not(exit), |
|---|
| 207 | { |
|---|
| 208 | Real time0 = Copy(Time); |
|---|
| 209 | |
|---|
| 210 | //Real CMsg::Trace::show(1, "Printing oldLnLikelyhood="<<oldLnLikelyhood); |
|---|
| 211 | Matrix p = _Probability(X, B, IdCt); |
|---|
| 212 | |
|---|
| 213 | //Real CMsg::Trace::show(1, "Printing p="<<p); |
|---|
| 214 | Matrix error = _Error(y, p); |
|---|
| 215 | |
|---|
| 216 | Matrix G = _Gradient(X, error); |
|---|
| 217 | Real time0.1 = Copy(Time); |
|---|
| 218 | Matrix H = _Hessian(vX, p); |
|---|
| 219 | Real time0.2 = Copy(Time); |
|---|
| 220 | Matrix dif = MinimumResidualsSolve(H, G); |
|---|
| 221 | |
|---|
| 222 | Real norm = MatFrobeniusNorm(G); |
|---|
| 223 | Real advance = MatFrobeniusNorm(dif); |
|---|
| 224 | Real maxAbsDif = MatMax(Abs(dif)); |
|---|
| 225 | |
|---|
| 226 | |
|---|
| 227 | Matrix mLnLikelyhood = _MLnLikelyhood(y, p); |
|---|
| 228 | Matrix mLLCorrect = IfMat(EQ(Abs(error), oneMat), negInfMat, |
|---|
| 229 | IfMat(LT(Abs(error), tolMat), zeroMat, mLnLikelyhood)); |
|---|
| 230 | |
|---|
| 231 | Real lnLikelyhood = MatSum(mLLCorrect); |
|---|
| 232 | //Real CMsg::Trace::show(1, "Printing dif"<<dif); |
|---|
| 233 | //Real CMsg::Trace::show(1, "Printing mLnLikelyhood"<<mLnLikelyhood); |
|---|
| 234 | //Real CMsg::Trace::show(1, "Printing mLLCorrect"<<mLLCorrect); |
|---|
| 235 | //Real CMsg::Trace::show(1, "Printing error"<<error); |
|---|
| 236 | |
|---|
| 237 | //Real CMsg::Trace::show(1, "Printing lnLikelyhood="<<lnLikelyhood); |
|---|
| 238 | |
|---|
| 239 | Real difTimeMin := (time0.2-time0.1)+difTimeMin; |
|---|
| 240 | |
|---|
| 241 | Real difTime = Copy(Time)-time0; |
|---|
| 242 | Real completeTime := completeTime+difTime; |
|---|
| 243 | Real exitTreatment = Case |
|---|
| 244 | ( |
|---|
| 245 | IsUnknown(advance), |
|---|
| 246 | { |
|---|
| 247 | Real CMsg::Trace::show(1, "Advance is unknown"); |
|---|
| 248 | Real exit:=1 |
|---|
| 249 | }, |
|---|
| 250 | GE(iter, maxIter), |
|---|
| 251 | { |
|---|
| 252 | Real CMsg::Trace::show(1, "MaxIter reached"); |
|---|
| 253 | Real exit:=1 |
|---|
| 254 | }, |
|---|
| 255 | LT(norm, dEpsilon), |
|---|
| 256 | { |
|---|
| 257 | Real CMsg::Trace::show(1, "Norm lower than "<<dEpsilon); |
|---|
| 258 | Real exit:=1 |
|---|
| 259 | }, |
|---|
| 260 | LT(maxAbsDif, tolerance), |
|---|
| 261 | { |
|---|
| 262 | Real CMsg::Trace::show(1, "MaxAbsDif lower than "<<tolerance); |
|---|
| 263 | Real exit:=1 |
|---|
| 264 | }, |
|---|
| 265 | LT(Abs(oldLnLikelyhood - lnLikelyhood), dEpsilon), |
|---|
| 266 | { |
|---|
| 267 | Real CMsg::Trace::show(1, |
|---|
| 268 | "LnLikelihood is stable: lnLikelyhood ="<<lnLikelyhood+ |
|---|
| 269 | " oldLnLikelyhood ="<<oldLnLikelyhood); |
|---|
| 270 | Real exit:=1 |
|---|
| 271 | }, |
|---|
| 272 | 1, |
|---|
| 273 | { |
|---|
| 274 | Text exitMsg = " Logit model iteration("+ |
|---|
| 275 | FormatReal(iter, "%0"+IntText(Floor(Log10(maxIter)+1))+".lf")+ |
|---|
| 276 | ")"+" "+ |
|---|
| 277 | " LogLikelyhood = "+FormatReal(lnLikelyhood, "%.4E")+" "+ |
|---|
| 278 | " MaxAbsDif = "+FormatReal(maxAbsDif, "%.4E")+" "+ |
|---|
| 279 | " Gradient Norm = "+FormatReal(norm, "%.4E")+" "+ |
|---|
| 280 | " Time = "+FormatReal(difTime, "%.4lf"); |
|---|
| 281 | Real CMsg::Trace::show(1, exitMsg); |
|---|
| 282 | Real iter := iter+1; |
|---|
| 283 | Real oldLnLikelyhood := Copy(lnLikelyhood); |
|---|
| 284 | Matrix B:=(Matrix B-dif); |
|---|
| 285 | Real 0 |
|---|
| 286 | } |
|---|
| 287 | ); |
|---|
| 288 | Real exitCycle = If(EQ(exitTreatment, 1), |
|---|
| 289 | { |
|---|
| 290 | Set cycle := SetOfAnything |
|---|
| 291 | (B, p, G, H, dif, norm, advance, |
|---|
| 292 | maxAbsDif, error, lnLikelyhood, oldLnLikelyhood, ctInfo, X, XIni, y, |
|---|
| 293 | mLLCorrect); |
|---|
| 294 | 1 |
|---|
| 295 | }, 0) |
|---|
| 296 | }); |
|---|
| 297 | Real time2 = Copy(Time); |
|---|
| 298 | /* |
|---|
| 299 | Matrix p = _Probability(X, B); |
|---|
| 300 | |
|---|
| 301 | Matrix error = _Error(y, p); |
|---|
| 302 | |
|---|
| 303 | Matrix G = _Gradient(X, error); |
|---|
| 304 | Matrix H = _Hessian(vX, p); |
|---|
| 305 | Matrix dif = MinimumResidualsSolve(H, G); |
|---|
| 306 | |
|---|
| 307 | Real norm = MatFrobeniusNorm(G); |
|---|
| 308 | Real advance = MatFrobeniusNorm(dif); |
|---|
| 309 | Real maxAbsDif = MatMax(Abs(dif)); |
|---|
| 310 | Matrix mLnLikelyhood = _MLnLikelyhood(y, p); |
|---|
| 311 | Real lnLikelyhood = MatSum(mLnLikelyhood); |
|---|
| 312 | */ |
|---|
| 313 | Real difTime2 = Copy(Time)-time2; |
|---|
| 314 | Real totalTime = completeTime+difTime2; |
|---|
| 315 | Text endMsg = |
|---|
| 316 | "Model Logit Ended. Time:"<<totalTime+" SplitTime:"<<difTimeMin+NL+NL; |
|---|
| 317 | Real WriteLn(endMsg); |
|---|
| 318 | |
|---|
| 319 | /* |
|---|
| 320 | SetOfAnything |
|---|
| 321 | (B, p, G, H, dif, norm, advance, |
|---|
| 322 | maxAbsDif, error, lnLikelyhood, oldLnLikelyhood) |
|---|
| 323 | */ |
|---|
| 324 | cycle |
|---|
| 325 | }; |
|---|
| 326 | |
|---|
| 327 | Set Estimate.MaxLikelyhood.Default(Matrix y, Matrix X) |
|---|
| 328 | { |
|---|
| 329 | Matrix B0Ini = Rand(Columns(X), 1, 0, 0); |
|---|
| 330 | Estimate.MaxLikelyhood |
|---|
| 331 | ( |
|---|
| 332 | y, // Matriz y de variable salida binaria |
|---|
| 333 | X, // Matriz x de variables entrada |
|---|
| 334 | B0Ini, |
|---|
| 335 | _.ctInfo, |
|---|
| 336 | _.dEpsilon, // Diferencia de paso |
|---|
| 337 | _.maxIter, // Numero maximo de iteraciones |
|---|
| 338 | _.tolerance // Tolerancia al error |
|---|
| 339 | ) |
|---|
| 340 | }; |
|---|
| 341 | Set Estimate.MaxLikelyhood.Constant(Matrix y, Matrix X, Matrix constant) |
|---|
| 342 | { |
|---|
| 343 | Matrix B0Ini = Rand(Columns(X), 1, 0, 0); |
|---|
| 344 | Estimate.MaxLikelyhood |
|---|
| 345 | ( |
|---|
| 346 | y, // Matriz y de variable salida binaria |
|---|
| 347 | X, // Matriz x de variables entrada |
|---|
| 348 | B0Ini, |
|---|
| 349 | constant, |
|---|
| 350 | _.dEpsilon, // Diferencia de paso |
|---|
| 351 | _.maxIter, // Numero maximo de iteraciones |
|---|
| 352 | _.tolerance // Tolerancia al error |
|---|
| 353 | ) |
|---|
| 354 | }; |
|---|
| 355 | Set Estimate.MaxLikelyhood.ProbB0 |
|---|
| 356 | ( |
|---|
| 357 | Matrix y, |
|---|
| 358 | Matrix X, |
|---|
| 359 | Matrix B0Ini, |
|---|
| 360 | Real prob |
|---|
| 361 | ) |
|---|
| 362 | { |
|---|
| 363 | Matrix probMat = Rand(Rows(y), 1, prob, prob); |
|---|
| 364 | Matrix constant = Log(probMat$/RSum(-probMat, 1)); |
|---|
| 365 | |
|---|
| 366 | Estimate.MaxLikelyhood |
|---|
| 367 | ( |
|---|
| 368 | y, // Matriz y de variable salida binaria |
|---|
| 369 | X, // Matriz x de variables entrada |
|---|
| 370 | B0Ini, |
|---|
| 371 | constant, |
|---|
| 372 | _.dEpsilon, // Diferencia de paso |
|---|
| 373 | _.maxIter, // Numero maximo de iteraciones |
|---|
| 374 | _.tolerance // Tolerancia al error |
|---|
| 375 | ) |
|---|
| 376 | }; |
|---|
| 377 | |
|---|
| 378 | Set Estimate.MaxLikelyhood.ProbRec |
|---|
| 379 | ( |
|---|
| 380 | Matrix y, |
|---|
| 381 | Matrix X, |
|---|
| 382 | Matrix B0Cur, |
|---|
| 383 | Real step, |
|---|
| 384 | Real tolerance, |
|---|
| 385 | Real probCur, |
|---|
| 386 | Real probEnd |
|---|
| 387 | ) |
|---|
| 388 | { |
|---|
| 389 | Text iniMsg = NL+NL+"Model Logit (p="<<probCur+") "+Time; |
|---|
| 390 | Real WriteLn(iniMsg); |
|---|
| 391 | |
|---|
| 392 | Set logitResult = Estimate.MaxLikelyhood.ProbB0(y, X, B0Cur, probCur); |
|---|
| 393 | If(LT(Abs(probCur - probEnd), tolerance), logitResult, |
|---|
| 394 | { |
|---|
| 395 | Real prob = probCur*step; |
|---|
| 396 | Matrix B0 = logitResult::B; |
|---|
| 397 | Estimate.MaxLikelyhood.ProbRec |
|---|
| 398 | (y, X, B0, step, tolerance, prob, probEnd) |
|---|
| 399 | }) |
|---|
| 400 | }; |
|---|
| 401 | |
|---|
| 402 | Set Estimate.MaxLikelyhood.Prob |
|---|
| 403 | ( |
|---|
| 404 | Matrix y, |
|---|
| 405 | Matrix X, |
|---|
| 406 | Real prob |
|---|
| 407 | ) |
|---|
| 408 | { |
|---|
| 409 | Real step = (prob/_.probability.Init)^(1/_.num.Step); |
|---|
| 410 | Matrix B0Ini = Rand(Columns(X), 1, 0, 0); |
|---|
| 411 | Estimate.MaxLikelyhood.ProbRec |
|---|
| 412 | (y, X, B0Ini, step, _.tolerance.Rec, _.probability.Init, prob) |
|---|
| 413 | }; |
|---|
| 414 | |
|---|
| 415 | Set Diagnosis |
|---|
| 416 | ( |
|---|
| 417 | Matrix y, |
|---|
| 418 | Matrix X, |
|---|
| 419 | Matrix B, |
|---|
| 420 | Matrix error, |
|---|
| 421 | Real lnLikelyhood, |
|---|
| 422 | Set names, |
|---|
| 423 | Matrix H //Hessian |
|---|
| 424 | ) |
|---|
| 425 | { |
|---|
| 426 | Text iniMsg = |
|---|
| 427 | "Model Logit Diagnosis. Init Time:"+Time; |
|---|
| 428 | Real WriteLn(iniMsg); |
|---|
| 429 | |
|---|
| 430 | Real N = Rows(X); // |
|---|
| 431 | Real n = Columns(X); // Parameter number |
|---|
| 432 | |
|---|
| 433 | Matrix FIM = -H; // Fisher Information Matrix |
|---|
| 434 | Matrix COV = SVDInverse(FIM); // Varianze Covarianza Parameter Matrix |
|---|
| 435 | |
|---|
| 436 | Set Parameters = For(1, Columns(X), Set(Real k) |
|---|
| 437 | { |
|---|
| 438 | Text name = names[k]; |
|---|
| 439 | Real value = MatDat(B, k, 1); |
|---|
| 440 | Real var = MatDat(COV, k, k); |
|---|
| 441 | Real std = SqRt(var); |
|---|
| 442 | Real tStudent = value/std; |
|---|
| 443 | Real refProb = 2*(1-DistT(Abs(tStudent), N-n-1)); |
|---|
| 444 | ParameterInf |
|---|
| 445 | ( |
|---|
| 446 | name, //Name |
|---|
| 447 | 0, //Factor |
|---|
| 448 | 0, //Order |
|---|
| 449 | value, //Value |
|---|
| 450 | std, //StDs |
|---|
| 451 | tStudent, //TStudent |
|---|
| 452 | refProb //RefuseProb |
|---|
| 453 | ) |
|---|
| 454 | }); |
|---|
| 455 | |
|---|
| 456 | Real VarTot = MatVar(y); |
|---|
| 457 | Real VarError = MatVar(error); |
|---|
| 458 | Real R2 = 1-VarError/VarTot; |
|---|
| 459 | |
|---|
| 460 | Real MaxProb = MatSum(y)/N; |
|---|
| 461 | Real lnLikelyhoodIntercep = |
|---|
| 462 | MatSum(_MLnLikelyhood(y, Rand(N, 1, MaxProb, MaxProb))); |
|---|
| 463 | |
|---|
| 464 | Real Nagelkerke.R2 = 1-(Exp((2/N)*(lnLikelyhoodIntercep-lnLikelyhood))); |
|---|
| 465 | Real Nagelkerke.R2Max = 1-Exp((2/N)*lnLikelyhoodIntercep); |
|---|
| 466 | Real Nagelkerke.R2MaxRescaled = Nagelkerke.R2/Nagelkerke.R2Max; |
|---|
| 467 | Text endMsg = |
|---|
| 468 | "Model Logit Diagnosis. End Time:"+Time+NL; |
|---|
| 469 | Real WriteLn(endMsg); |
|---|
| 470 | |
|---|
| 471 | SetOfAnything |
|---|
| 472 | ( |
|---|
| 473 | Parameters, |
|---|
| 474 | FIM, |
|---|
| 475 | COV, |
|---|
| 476 | MaxProb, |
|---|
| 477 | R2, |
|---|
| 478 | Nagelkerke.R2, |
|---|
| 479 | Nagelkerke.R2Max, |
|---|
| 480 | Nagelkerke.R2MaxRescaled, |
|---|
| 481 | lnLikelyhood, |
|---|
| 482 | lnLikelyhoodIntercep |
|---|
| 483 | ) |
|---|
| 484 | }; |
|---|
| 485 | |
|---|
| 486 | Set PreTesting(Matrix Y, Matrix X, Set varNames) |
|---|
| 487 | { |
|---|
| 488 | Text iniMsg = |
|---|
| 489 | "Model Logit PreTesting. Init Time:"+Time; |
|---|
| 490 | Real WriteLn(iniMsg); |
|---|
| 491 | |
|---|
| 492 | Real WriteLn(" Checking column stability..."+Time); |
|---|
| 493 | Matrix unkX = IsUnknown(X); |
|---|
| 494 | Matrix posInfX = IsPosInf(X); |
|---|
| 495 | Matrix negInfX = IsNegInf(X); |
|---|
| 496 | |
|---|
| 497 | Matrix unkY = IsUnknown(Y); |
|---|
| 498 | Matrix posInfY = IsPosInf(Y); |
|---|
| 499 | Matrix negInfY = IsNegInf(Y); |
|---|
| 500 | |
|---|
| 501 | Real isUnkX = MatSum(unkX); |
|---|
| 502 | Real isPosInfX = MatSum(posInfX); |
|---|
| 503 | Real isNegInfX = MatSum(negInfX); |
|---|
| 504 | |
|---|
| 505 | Real isUnkY = MatSum(unkY); |
|---|
| 506 | Real isPosInfY = MatSum(posInfY); |
|---|
| 507 | Real isNegInfY = MatSum(negInfY); |
|---|
| 508 | |
|---|
| 509 | Real n = Rows(Y); |
|---|
| 510 | Real balanced = MatSum(Y)/n; |
|---|
| 511 | |
|---|
| 512 | Real valid = |
|---|
| 513 | Not(Or(isUnkX, isPosInfX, isNegInfX, isUnkY, isPosInfY, isNegInfY)); |
|---|
| 514 | |
|---|
| 515 | Set checkValid = If(EQ(valid, 1), Empty, |
|---|
| 516 | { |
|---|
| 517 | Set data = For(1, Card(varNames), Set(Real k) |
|---|
| 518 | { |
|---|
| 519 | Text name = varNames[k]; |
|---|
| 520 | Real kUnkX = MatSum(SubCol(unkX, [[k]])); |
|---|
| 521 | Real kPosInfX = MatSum(SubCol(posInfX, [[k]])); |
|---|
| 522 | Real kNegInfX = MatSum(SubCol(negInfX, [[k]])); |
|---|
| 523 | SetOfAnything(name, kUnkX, kPosInfX, kNegInfX) |
|---|
| 524 | }); |
|---|
| 525 | Set header = SetOfText("VarName", "Unk", "PosInf", "NegInf"); |
|---|
| 526 | SetOfSet(header)<< |
|---|
| 527 | SetOfSet(SetOfAnything("Y", isUnkY, isPosInfY, isNegInfY))<< |
|---|
| 528 | data |
|---|
| 529 | }); |
|---|
| 530 | Real WriteLn(" Adjusting X matrix..."+Time); |
|---|
| 531 | |
|---|
| 532 | Matrix YPre = |
|---|
| 533 | If(isUnkY, IfMat(unkY, VMat2Mat(Eye(Rows(Y), 1, 0, 0)), Y), Y); |
|---|
| 534 | Matrix XPre = |
|---|
| 535 | If(isUnkX, IfMat(unkX, VMat2Mat(Eye(Rows(X), Columns(X), 0, 0)), X), X); |
|---|
| 536 | |
|---|
| 537 | VMatrix vXPre = Mat2VMat(XPre); |
|---|
| 538 | Set index = Range(1, Columns(X), 1); |
|---|
| 539 | // Real WriteLn(" Correlation Y|X matrix..."+Time); |
|---|
| 540 | // Matrix corVarX = Cor(Tra(YPre|XPre)); |
|---|
| 541 | |
|---|
| 542 | Real WriteLn(" X information column..."+Time); |
|---|
| 543 | Set ColInfo = For(1, Card(varNames), Set(Real k) |
|---|
| 544 | { |
|---|
| 545 | Text name = varNames[k]; |
|---|
| 546 | Matrix col = SubCol(XPre, [[k]]); |
|---|
| 547 | Real min = MatMin(col); |
|---|
| 548 | Real max = MatMax(col); |
|---|
| 549 | Real stds = MatStDs(col); |
|---|
| 550 | Real avr = MatAvr(col); |
|---|
| 551 | Matrix freq = Frequency(col, 100, min, max); |
|---|
| 552 | Matrix freq01 = Frequency(col$*Y, 100, min, max); |
|---|
| 553 | Matrix ratioDisc = freq01$/freq; |
|---|
| 554 | Real minValue = MatDat(freq01, 1, 2); |
|---|
| 555 | Real maxValue = MatDat(freq01, 100, 2); |
|---|
| 556 | Real maxRatio = MatDat(ratioDisc, 100, 2)/balanced; |
|---|
| 557 | Real dicotomicRatio = (minValue+maxValue)/n ; |
|---|
| 558 | |
|---|
| 559 | VMatrix y = SubCol(vXPre, [[k]]); |
|---|
| 560 | VMatrix x = SubCol(vXPre, index-[[k]]); |
|---|
| 561 | |
|---|
| 562 | Set linReg = LinReg::Get.GeneralInformation(y, x); |
|---|
| 563 | Real R2MultiColinearity = linReg::R2; |
|---|
| 564 | |
|---|
| 565 | SetOfAnything |
|---|
| 566 | ( |
|---|
| 567 | name, |
|---|
| 568 | min, |
|---|
| 569 | max, |
|---|
| 570 | stds, |
|---|
| 571 | avr, |
|---|
| 572 | freq, |
|---|
| 573 | freq01, |
|---|
| 574 | ratioDisc, |
|---|
| 575 | maxRatio, |
|---|
| 576 | maxValue, |
|---|
| 577 | dicotomicRatio, |
|---|
| 578 | R2MultiColinearity |
|---|
| 579 | ) |
|---|
| 580 | }); |
|---|
| 581 | |
|---|
| 582 | Text endMsg = |
|---|
| 583 | "Model Logit PreTesting. End Time:"+Time+NL; |
|---|
| 584 | Real WriteLn(endMsg); |
|---|
| 585 | |
|---|
| 586 | SetOfAnything |
|---|
| 587 | (unkX, posInfX, negInfX, unkY, posInfY, negInfY, valid, checkValid, |
|---|
| 588 | balanced, /*corVarX,*/ |
|---|
| 589 | ColInfo, YPre, XPre) |
|---|
| 590 | } |
|---|
| 591 | ]]; |
|---|
| 592 | //_.-._.-._.-._.-._.-._.-._.-._.-._.-._.-._.-._.-._.-._.-._.-._.-._.-._.-._.-. |
|---|
| 593 | |
|---|
| 594 | |
|---|
| 595 | //////////////////////////////////////////////////////////////////////////// |
|---|
| 596 | // Aplica el metodo Logit a todos los outputs. |
|---|
| 597 | Set _DoEstimation(Set allOutMat) |
|---|
| 598 | //////////////////////////////////////////////////////////////////////////// |
|---|
| 599 | { |
|---|
| 600 | Set EvalSet(allOutMat, Set(NameBlock args) { |
|---|
| 601 | Set results = Logit::Estimate.MaxLikelyhood.Default( |
|---|
| 602 | args::outputData, |
|---|
| 603 | args::inputData |
|---|
| 604 | ); |
|---|
| 605 | |
|---|
| 606 | Set resultsMod = [[ |
|---|
| 607 | Matrix Parameters = results["B"]; |
|---|
| 608 | Matrix Residuals = results["error"]; |
|---|
| 609 | Matrix Probabilities = results["p"]; |
|---|
| 610 | Matrix Gradient = results["G"]; |
|---|
| 611 | Matrix Hessian = results["H"]; |
|---|
| 612 | Matrix Likelihoods = results["mLLCorrect"]; |
|---|
| 613 | Real Likelihood = Exp(results["lnLikelyhood"]); |
|---|
| 614 | Real LogLikelihood = results["lnLikelyhood"]; |
|---|
| 615 | Set ParameterIndices = args::parameterIndices |
|---|
| 616 | ]]; |
|---|
| 617 | Set PutName(args::outputName, resultsMod) |
|---|
| 618 | }) |
|---|
| 619 | }; |
|---|
| 620 | |
|---|
| 621 | //////////////////////////////////////////////////////////////////////////// |
|---|
| 622 | @MMS.ResultsAdapter Execute(Real void) |
|---|
| 623 | //////////////////////////////////////////////////////////////////////////// |
|---|
| 624 | { |
|---|
| 625 | Set argsEstim = _BuildMatrices(0); |
|---|
| 626 | Real ApplySettings(0); |
|---|
| 627 | Set _results = _DoEstimation(argsEstim); |
|---|
| 628 | Real RestoreSettings(0); |
|---|
| 629 | @MMS.ResultsAdapterLogit resultsAdapter = |
|---|
| 630 | @MMS.ResultsAdapterLogit::New(_results) |
|---|
| 631 | }; |
|---|
| 632 | |
|---|
| 633 | //////////////////////////////////////////////////////////////////////////// |
|---|
| 634 | Static @MMS.StrategyVLogit New(NameBlock args) |
|---|
| 635 | //////////////////////////////////////////////////////////////////////////// |
|---|
| 636 | { |
|---|
| 637 | @MMS.StrategyVLogit obj = [[ |
|---|
| 638 | // ¿necesita nombre y descripción? |
|---|
| 639 | Text _.name = getOptArg(args, "_.name", "VLogit"); |
|---|
| 640 | Text _.description = getOptArg(args, "_.description", "") |
|---|
| 641 | ]]; |
|---|
| 642 | // Settings de Logit construidas de acuerdo al ticket de TOL-Project #736 |
|---|
| 643 | Real obj::AddSetting.FromObject(MaxIter); |
|---|
| 644 | Real obj::AddSetting.FromObject(Tolerance); |
|---|
| 645 | obj |
|---|
| 646 | }; |
|---|
| 647 | |
|---|
| 648 | //////////////////////////////////////////////////////////////////////////// |
|---|
| 649 | Static @MMS.StrategyVLogit Default(Real void) |
|---|
| 650 | //////////////////////////////////////////////////////////////////////////// |
|---|
| 651 | { |
|---|
| 652 | @MMS.StrategyVLogit::New([[ Text _.name = "VLogit" ]]) |
|---|
| 653 | } |
|---|
| 654 | }; |
|---|